Deep Learning Channel Estimation for OFDM 5G Systems with Different Channel Models

نویسندگان

چکیده

Abstract At cellular wireless communication systems, channel estimation (CE) is one of the key techniques that are used in Orthogonal Frequency Division Multiplexing modulation (OFDM). The most common methods Decision‐Directed Channel Estimation, Pilot-Assisted Estimation (PACE) and blind estimation. Among them, PACE commonly has a steadier performance. Applying deep learning (DL) CE getting increasing interest researchers during past 3 years. main objective this paper to assess efficiency DL-based compared conventional techniques, such as least-square (LS) minimum mean-square error (MMSE) estimators. A simulation environment evaluate OFDM performance at different models been used. DL process estimates from training data also employed get estimated impulse response channel. Two have comparison: Tapped Delay Line Clustered models. evaluated under parameters including number pilots (64 or 8 pilots), subcarriers (64), length cyclic prefix (16 0 samples) carrier frequency (4 GHz) through computer using MATLAB. From results, trained estimator provides better results estimating detecting transmitted symbols LS MMSE estimators although, complexity proposed LSTM exceeds equivalent estimator. Furthermore, demonstrates its effectiveness with various pilot densities periods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

Channel Estimation for OFDM Systems

This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM) systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI), within a maximum of 0.4 dB degradation, regardless of the delay spread of the chan...

متن کامل

Channel Estimation in OFDM Systems

1 OFDM Background .....................................................2 2 Baseband Model ..........................................................2 3 Block-Type Pilot Channel Estimation .........................4 4 Comb-Type Pilot Channel Estimation.........................7 5 Other Pilot-Aided Channel Estimations ......................9 6 Performance Evaluation..................................

متن کامل

Channel Estimation in OFDM Systems

Orthogonal frequency division multiplexing (OFDM) provides an effective and low complexity means of eliminating intersymbol interference for transmission over frequency selective fading channels. This technique has received a lot of interest in mobile communication research as the radio channel is usually frequency selective and time variant. In OFDM system, modulation may be coherent or differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wireless Personal Communications

سال: 2022

ISSN: ['1572-834X', '0929-6212']

DOI: https://doi.org/10.1007/s11277-022-10077-6